Питание

Азот как химический элемент входит в состав. Высшее образование азот

22.02.2017

Физиологическая роль элемента . Азот (N ) входит в группу макроэлементов и является одной из основных составляющих всех живых организмов, поэтому его роль в питании растений незаменима. Количество азота в растениях составляет в среднем 0,2 – 5% и более (от сухой массы). Он является составной частью белков и ферментов, как обязательный компонент присутствует в молекулах нуклеиновых кислот (ДНК и РНК). Азот входит в состав хлорофилла, витаминов, алкалоидов, растительных протеинов, энзимов и других органических веществ, необходимых для полноценного роста и развития растительных организмов.


От уровня азотного питания зависит интенсивность синтеза белка и других азотосодержащих соединений, влияющих на ростовые процессы в культурах. Поэтому именно в период активного роста растения, образования у него стеблей и листьев возникает максимальная потребность в этом элементе. Достаточное количество азота обеспечивает высокую продуктивность растений: активизируются ростовые процессы и замедляются процессы старения, повышается урожай и содержание белка в плодах (зерне). Внешние признаки оптимального количества азота в снабжении растений заключаются в темно-зеленой окраске листьев, активном формировании стеблей и листьев, а также полноценных репродуктивных органов. Повышение уровня азотного питания увеличивает поступление в растения фосфора, калия, кальция, магния, меди, марганца и цинка. При избытке азота наблюдается обратная закономерность.





Дефицит азота в растениях . Последствия недостатка азота в питании культур могут выразиться в замедлении роста их вегетативных органов (более слабом образовании побегов, листьев, стеблей), а также в ограниченном формировании органов плодоношения. Прежде всего, недостаток азота вызывает нарушение образования хлорофилла, что внешне проявляется в изменении окраски листьев (в первую очередь более старых) – они становятся бледно-зелеными или даже желтыми (хлороз). При остром дефиците азота листья в дальнейшем могут приобретать желто-оранжевый или красноватый оттенок. Затем они увядают, засыхают и преждевременно опадают. В результате растение не может образовать достаточное количество плодов. Значительно снижается урожай культур и ухудшается его качество (уменьшается количество белка в продукции).


Избыток азота в растениях . Не менее вреден и избыток азота для растений. Он способствует чрезмерному образованию зеленой массы, что приводит к оттоку полезных веществ из генеративных органов к вегетативным. В итоге замедляется процесс созревания урожая и снижаются его качественные показатели. У злаковых культур чрезмерные количества азота приводят к полеганию посевов; у овощных (корне- и клубнеплодовых) растений происходит интенсивный рост ботвы за счет более слабого развития корне- и клубнеплодов, в которых, к тому же, уменьшается содержание сахаров, крахмала и пр. полезных веществ. У бахчевых и овощных культур при избытке азота возникает риск накопления нитратов в токсичных пределах (выше ПДК), а у молодых плодовых деревьев интенсивный рост древесины приводит к значительному снижению порога холодо- и морозоустойчивости, что уменьшает их жизнеспособность при прохождении зимнего периода.





Содержание азота в растениях . Количество азота в растениях зависит от их вида, стадии развития, погодных и агротехнических условий. Так, в наибольшем количестве этого элемента нуждаются молодые растения, и количество азота в их тканях, а также в их зерне и семенах составляет 4 – 7%. По мере дальнейшего их развития потребность в азоте постепенно снижается. При засушливых погодных условиях наблюдается одновременное снижение содержания углеводов и накопление азота в зерне злаковых культур, масличных бобовых, кормовых и других растений. Различной потребностью в этом элементе могут обладать даже растения одного семейства. Например, овощные культуры условно делятся на четыре группы в зависимости от их требовательности к азоту. К очень требовательным (первая группа) относятся: ревень, капуста брюссельская, цветная, краснокочанная и белокочанная поздняя. Требовательные (вторая группа) включают: сельдерей, спаржу, лук-порей, тыкву, капусту белокочанную раннюю и китайскую. Представители среднетребовательных (третья группа) – это: шпинат, салат кочанный, лук репчатый, огурцы, томаты, свекла столовая, морковь ранняя, капуста листовая и кольраби. Самыми малотребовательными (четвертая группа) являются редис, лук на перо, горох, фасоль.





Неравномерно распределение азота и в самом растении. Наибольшее его количество (до 90%) входит в состав белков, находящихся в семенах. Вегетативные органы содержат значительно меньше азота, причем количество его в молодых листьях является преобладающим по сравнению с корнями и стеблями. Среди культур лидерами по содержанию этого элемента являются бобовые и масличные растения. Им значительно уступают злаки. Очень значительные количества азота могут присутствовать в листовых овощах, корнеплодах и клубнях на момент достижения ими товарной спелости – до 50% от общего количества элемента в растениях. Вместе с урожаем растения выносят из почв значительную часть азота. Для зерновых культур этот показатель составляет 100 – 150 кг/га. У овощных растений потребление азота несколько выше: 150 – 250 кг/га.




Содержание азота в почвах . Количество азота в почвах колеблется в значительных пределах и зависит от типа грунтов, их гранулометрических показателей, степени обогащения органическими соединениями (уровня их плодородия) и пр. Для пахотного слоя показатели содержания этого элемента составляют от 1,5 т/га (в песчаных и супесчаных дерново-подзолистых почвах, сероземах) до 15 т/га (в плодородных черноземах). Но основная часть азота в грунтах находится в виде сложных органических соединений. В отличие от бобовых культур, которые с помощью клубеньковых бактерий могут использовать атмосферный азот, остальные растения способны поглощать только его минеральные формы, наиболее доступные из которых – аммоний и нитраты.


Преимущество аммония как восстановленной формы азота состоит в том, что его использование в синтезе аминокислот и белков менее затратно в энергетическом выражении, и сам процесс синтеза завершается в более короткое время. Нитраты же требуют дополнительной энергии и времени для своего восстановления до аммиака (аммонификации), но они более безопасны для культур, так как не накапливаются в опасных количествах, способных вызвать отравление, ожоги тканей, а иногда и гибель всего растения.


В природных условиях корневая система растений поглощает из почвы преимущественно нитратные формы азота. Это связано с тем, что нитраты находятся в почвенном растворе и обладают высокой степенью подвижности. Но эти соединения не могут участвовать в синтезе аминокислот без их предварительного восстановления до аммония.


Большинство сельскохозяйственных культур могут успешно развиваться как на аммонийной, так и на нитратной формах. Но в зависимости от кислотности почвы многие растения отдают предпочтение определенной форме азота. Так, в грунтах со слабокислой реакцией культуры лучше поглощают нитратную форму, а у растений нейтральных и кислых почв более востребована аммонийная, поскольку нитраты могут провоцировать у них развитие хлороза. Такое разделение в питании требует дополнительной подпитки культур фосфором и молибденом (при поглощении нитратных форм) либо кальцием, магнием и калием (в случае аммиачного питания).


. Азот относится к самым дефицитным элементам питания, поскольку в почвах его содержание (доступные формы) составляет всего 0,02 – 0,5%, большая часть которого является продуктом жизнедеятельности микроорганизмов некоторых видов растений, а также разложения органических веществ. К тому же растворимые соли азота легко вымываются из пахотных слоев в более глубокие. Накопленные в почвах благодаря деятельности клубеньковых бактерий запасы азота (от 60 до 300 кг/га) являются самым доступным, безопасным и дешевым источником такого необходимого элемента. Но такое количество этого элемента не может полностью обеспечить потребность в нем сельскохозяйственных культур.





Тенденция к интенсификации сельскохозяйственного производства требует значительных запасов элементов, обеспечивающих нормальную жизнедеятельность культур, поэтому аграрные технологии предусматривают пополнение пахотных почв минеральными и органическими удобрениями с целью повышения уровня их плодородия и обеспечения полноценного питания растений. Именно поэтому применяются минеральные удобрения, но не всегда их применение приводит к наилучшим результатам. Самый оптимальный вариант – это комплексное обогащение земель органическими и минеральными азотосодержащими веществами.


Одним из наиболее эффективных минеральных источников азота для культур являются нитратные удобрения (кальциевая селитра, натриевая селитра, калийная селитра). Они имеют низкий процент вымывания из плодородного слоя (около 1%), обладают высокой подвижностью и доступностью, но легко теряются из почвы газообразно (до 30% и более) в результате денитрификации, образуя N 2 , NO, N 2 O. Нитратные удобрения обладают щелочными свойствами, поэтому наиболее целесообразным является их применение на кислых почвах.


Аммиачные удобрения существуют как в твердой форме (сульфат аммония, хлористый аммоний, бикарбонат аммония), так и в жидкой (жидкий или водный аммиак, аммиачная вода, аммиакаты и др.). В отличие от нитратных, аммиачные удобрения для перехода в доступную для поглощения растениями форму должны пройти процесс нитрификации, поэтому важно правильно рассчитать время для их внесения с целью достичь оптимальных результатов от их применения. Этот вид удобрений подходит практически для всех сельскохозяйственных культур и может применяться на различных типах грунтов.





Самыми концентрированными (до 46% N) и высокоэффективными удобрениями являются амидные (карбамид или мочевина CH 4 N 2 O). Это одна из лучших форм азотных удобрений. Мочевину можно использовать как в качестве подкормок, так и для основного внесения в почву. Подходит для всех культур и для различных типов грунтов. Чтобы замедлить процесс высвобождения азота, практикуется ее совместное использование с ингибиторами.


Существует также группа аммиачно-нитратных удобрений, которые содержат одновременно нитратные и аммиачные формы азота (аммиачная селитра, сульфонитрат аммония, известково-аммонийная селитра). Аммиачная селитра (до 34% N) – это универсальное растворимое удобрение, применяющееся как для основного внесения, так и в качестве подкормки. Обладает высокой гигроскопичностью, поэтому быстро слеживается и в этом случае требует измельчения перед применением. Побочный эффект от ее применения – повышение кислотности почвы, поэтому целесообразно применять ее в смеси с известью, мелом либо другим нейтрализующим компонентом.


Кроме минеральных источников азота существуют также органические: компост, птичий помет, навоз, сточные воды, растительные остатки бобовых культур. Использование сидератов в качестве предшественников – еще один из перспективных, экологически безопасных и дешевых способов восстановления азота и повышения урожайности сельскохозяйственных культур.

Происходит от греческого слова azoos - безжизненный, по-латыни Nitrogenium. Химический знак элемента - N. Азот - химический элемент V группы периодической системы Менделеева, порядковый номер 7, относительная атомная масса 14,0067; бесцветный газ, не имеющий запаха и вкуса.

Историческая справка.
Соединения азота - селитра, азотная кислота, аммиак - были известны задолго до получения азота в свободном состоянии. В 1772 г. Д. Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им “удушливым воздухом”, не поддерживает дыхания и горения. В 1787 г. А. Лавуазье установил, что “жизненный” и “удушливый” газы, входящие в состав воздуха, это простые вещества, и предложил название “азот”. В 1784 г. Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азота (от позднелатинского nitrum - селитра и греческого gennao - рождаю, произвожу), предложенное в 1790 году Ж. А. Шапталем. К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.

Распространенность в природе.
Азот - один из самых распространенных элементов на Земле, причем основная его масса (около 4*1015 т.)сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N2) составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание азота в литосфере 1,9*10-3% по массе. Природные соединения азота - хлористый аммоний NH4CI и различные нитраты. Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитры были главным поставщиком азота для промышленности (сейчас основное значение для связывания азота имеет промышленный синтез аммиака из азота воздуха и водорода). Небольшие количества связанного азота находятся в каменном угле (1 - 2,5%) и нефти (0,02 - 1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1%) и в живых организмах (0,3%).
Хотя название “азот” означает “не поддерживающий жизни”, на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16 - 17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические. Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота.
В природе осуществляется круговорот азота, главную роль в котором играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и др. Однако в результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными. Дефицит азота характерен для земледелия почти всех стран, наблюдается дефицит азота и в животноводстве (“белковое голодание”). На почвах, бедных доступным азотом, растения плохо развиваются. Хозяйственная деятельность человека нарушает круговорот азота. Так, сжигание топлива обогащает атмосферу азотом, а заводы, производящие удобрения, связывают азот из воздуха. Транспортировка удобрений и продуктов сельского хозяйства перераспределяет азот на поверхности земли.
Азот - четвертый по распространенности элемент Солнечной системы (после водорода, гелия и кислорода).

Атом, молекула.
Внешняя электронная оболочка атома азота состоит из 5 электронов (одной неподеленной пары и трех неспаренных - конфигурация 2s22p3). Чаще всего азот в соединениях 3-ковалентен за счет неспаренных электронов (как в аммиаке NH3). Наличие неподеленной пары электронов может приводить к образованию еще одной ковалентной связи, и азот становится 4-ковалентным (как в ионе аммония NH4+). Степени окисления азота меняются от +5 (в N2O5) до -3 (в NH3). В обычных условиях в свободном состоянии азот образует молекулу N2, где атомы азота связаны тремя ковалентными связями. Молекула азота очень устойчива: энергия диссоциации ее на атомы составляет 942,9 кдж/моль, поэтому даже при температуре 33000С степень диссоциации азота составляет лишь около 0,1%.

Физические и химические свойства.
Азот немного легче воздуха; плотность 1,2506 кг/м3 (при 00С и 101325 н/м2 или 760 мм. рт. ст.), tпл-209,860С, tкип-195,80С. Азот сжижается с трудом: его критическая температура довольно низка (-147,10С), а критическое давление высоко 3,39 Мн/м2 (34,6 кгс/см2);плотность жидкого азота 808 кг/м3. В воде азот менее растворим, чем кислород: при 00С в 1 м3 H2O растворяется 23,3 г азота. Лучше, чем в воде, азот растворим в некоторых углеводородах.
Только с такими активными металлами, как литий, кальций, магний, азот взаимодействует при нагревании до сравнительно невысоких температур. С большинством других элементов азот реагирует при высокой температуре и в присутствии катализаторов. Хорошо изучены соединения азота с кислородом N2O, NO, N2O3, NO2 и N2O5. Из них при непосредственном взаимодействии элементов (40000С) образуется окись NO, которая при охлаждении легко окисляется далее до двуокиси NO2. В воздухе окислы азота образуются при атмосферных разрядах. Их можно получить также действием на смесь азота с кислородом ионизирующих излучений. При растворении в воде азотистого N2O3 и азотного N2O5 ангидридов соответственно получаются азотистая кислота НNO2 и азотная кислота НNO3, образующие соли - нитриты и нитраты. С водородом азот соединяется только при высокой температуре и в присутствии катализаторов, при этом образуется аммиак NH3. Кроме аммиака, известны и другие многочисленные соединения азота с водородом, например гидразин H2N-NH2, диимид HN-NH, азотистоводородная кислота HN3 (H-N=N=N), октазон N8H14 и др.; большинство соединений азота с водородом выделено только в виде органических производных. С галогенами азот непосредственно не взаимодействует, поэтому все галогениды азота получают косвенным путем, например фтористый азот NF3 - при взаимодействии фтора с аммиаком. Как правило, галогениды азота - малостойкие соединения (за исключением NF3); более устойчивы оксигалогениды азота - NOF, NOCI, NOBr, NO2F и NO2CI. С серой также не происходит непосредственного соединения азота; азотистая сера N4S4 получается в результате реакции жидкой серы с аммиаком. При взаимодействии раскаленного кокса с азотом образуется циан (СN)2. Нагреванием азота с ацетиленом С2Н2 до 15000С может быть получен цианистый водород HCN. Взаимодействие азота с металлами при высоких температурах приводит к образованию нитридов (например, Mg3N2).
При действии на обычный азот электрических разрядов или при разложении нитридов бора, титана, магния и кальция, а также при электрических разрядах в воздухе может образоваться активный азот, представляющий собой смесь молекул и атомов азота, обладающих повышенным запасом энергии. В отличие от молекулярного, активный азот весьма энергично взаимодействует с кислородом, водородом, парами серы, фосфором и некоторыми металлами.
Азот входит в состав очень многих важнейших органических соединений (амины, аминокислоты, нитросоединения и др.).

Получение и применение.
В лаборатории азот легко может быть получен при нагревании концентрированного нитрита аммония: NH4NO2 N2 + 2H2O. Технический способ получения азота основан на разделении предварительно сжиженного воздуха, который затем подвергается разгонке.
Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т. д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания азота воздуха имеет разработанный в 1905 цианамидный метод, основанный на том, что при 10000С карбид кальция (получаемый накаливанием смеси известии угля в электрической печи) реагирует со свободным азотом: CaC2 + N2 CaCN2 + C. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN2 + 3H2O CaCO3 + 2NH3.
Cвободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т. д. Жидкий азот находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный азот в сжатом виде - в баллонах. Широко применяют многие соединения азота. Производство связанного азота стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.