Питание

Характеристика связей в химии. Основные типы химической связи

Химическая связь возникает благодаря взаимодействию электрических полей создаваемых электронами и ядрами атомов, т.е. химическая связь имеет электрическую природу.

Под химической связью понимают результат взаимодействия 2х или более атомов приводящий к образованию устойчивой многоатомной системы. Условием образования химической связи является уменьшение энергии взаимодействующих атомов, т.е. молекулярное состояние вещества энергетически более выгодно, чем атомное. При образовании химической связи атомы стремятся получить завершенную электронную оболочку.

Различают: ковалентную, ионную, металлическую, водородную и межмолекулярную.

Ковалентная связь – наиболее общий вид химической связи, возникающий за счет обобществления электронной пары посредством обменного механизма – , когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму , если электронная пара передается в общее пользование одним атомом (донором – N, O, Cl, F) другому атому (акцептору – атомы d-элементов).

Характеристики хим связи.

1 – кратность связей – между 2мя атомами возможна только 1 сигма-связь, но наряду с ней между теми же атомами могут быть пи и дельта-связь, что приводит к образованию кратных связей. Кратность определяется числом общих электронных пар.

2 – длина связи – межъядерное расстояние в молекуле, чем больше кратность, тем меньше ее длина.

3 – прочность связи – это количество энергии необходимое для ее разрыва

4 – насыщаемость ковалентной связи проявляется в том, что одна атомная орбиталь может принимать участие в образовании только одной к.с. Это свойство определяет стехиометрию молекулярных соединений.

5 – направленность к.с. в зависимости от того, какую форму и какое направление имеют электронные облака в пространстве при их взаимном перекрывании могут образовываться соединения с линейной и угловой формой молекул.

Ионная связь образуется между атомами которые сильно отличаются по электроотрицательности. Это соединения главных подгрупп 1 и 2 групп с элементами главных подгрупп 6 и 7 групп. Ионной называют химическую связь, которая осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов.

Механизм образования ионной связи: а) образование ионов взаимодействующих атомов; б) образование молекулы за счет притяжения ионов.

Ненаправленность и ненасыщенность ионной связи

Силовые поля ионов равномерно распределяются во всех направлениях поэтому каждый ион может притягивать к себе ионы противоположного знака в любом направлении. В этом заключается ненаправленность ионной связи. Взаимодействие 2х ионов противоположного знака не приводит к полной взаимной компенсации их силовых полей. Поэтому у них сохраняется способность притягивать ионы и по другим направлениям, т.е. ионная связь характеризуется ненасыщенностью. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона).

Металлическая связь – хим. Связь в металлах. У металлов имеется избыток валентных орбиталей и недостаток электронов. При сближении атомов их валентные орбитали перекрываются благодаря чему электроны свободно перемещаются из одной орбитали в другую, осуществляется связь между всеми атомами металла. Связь которую осуществляют относительно свободные электроны между ионами металла в кристаллической решетке называется металлической связью. Связь сильно делокализована и не обладает направленностью и насыщенностью, т.к. валентные электроны равномерно распределены по кристаллу. Наличие свободных электронов обусловливает существование общих свойств металлов: непрозрачность, металлический блеск, высокая электро и теплопроводность, ковкость и пластичность.

Водородная связь – связь между атомом Н и сильноотрицательным элементом (F, Cl, N, O, S). Водородные связи могут быть внутри- и межмолекулярными. ВС слабее ковалентной связи. Возникновение ВС объясняется действием электростатических сил. Атом Н обладает маленьким радиусом и при смещении или отдаче единственного электрона Н приобретает сильный положительный заряд, который действует на электроотрицательность.






























Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Основные типы химической связи

сновные типы химической связи .


Вам известно, что атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.

Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей.

В периодах наблюдается общая тенденция роста электроотрица-тельности элементов, а в группах – их падения. Элементы по электроот-рицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах.

Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи.


Ионная связь.


Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.

Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na 2 SO 4) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).­­­ ­ ­­ ­­ ­


Ковалентная неполярная связь.


При взаимодействии атомов с одинаковой электроотрица-тельностью образуются молекулы с ковалентной неполярной связью. Такая связь существует в молекулах следующих простых веществ: H 2 , F 2 , Cl 2 , O 2 , N 2 . Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодей-ствием, которые осуществляет при сближении атомов.

Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.


Ковалентная полярная связь.


При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.

К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.


Металлическая связь.

Связь, которая образуется в результате взаимодействия относите-льно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов.

Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свобо-дные электроны, оторвавшиеся от атома, перемещаются между положи-тельными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристал-лической решетки металлов.


Водородная связь.

Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.

Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?

Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H 2­ O, NH 3).

Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H 2 O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H 2 O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.

Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.

Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их «упаковки».

При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.

Повышение температуры кипения спиртов происходит также всле-дствие укрупнения их молекул.

Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии вам известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплиментарности.

Похожие рефераты:

Билет 10 Соединения сложного состава, у которых можно выделить центральный атом (комплексообразователь) и непосредственно связанные с ним молекулы или ионы (лиганды), называются комплексными соединениями. По координационной теории Вернера в каждом комплексном соединении различают в...

Формулировка периодического закона Д. И. Менделеева в свете теории строения атома. Связь периодического закона и периодической системы со строением атомов. Структура периодической Системы Д. И. Менделеева.

Московский Государственный Технологический Университет "СТАНКИН" Реферат по химии "Физическая связь" Выполнил: Фридлянд Д.А.

Строение атома водорода в периодической системе. Степени окисления. Распространенность в природе. Водород, как простое вещество, молекулы которого состоят из двух атомов, связанных между собой ковалентной неполярной связью. Физико-химические свойства.

Электростатическая связь: виды взаимодействий. Свойства ковалентных связей (длина, полярность и энергия). Средняя величина дипольных моментов связей и функциональных групп. Строение метана. Строение молекул с n, o-атомами с неподеленной парой электронов.

Представление о строении метана (молекулярная, электронная и структурная формулы). Физические свойства, нахождение в природе, тип химической связи и пространственное строение молекулы и атома углерода в трёх валентных состояниях, понятие гибридизации.

Представления об участии атома водорода в образовании двух химических связей. Примеры соединений с водородной связью. Структура димера фторида водорода. Ассоциаты молекул фторида водорода. Методы молекулярной спектроскопии. Суммарный электрический заряд.

Окислительно-восстановительные процессы принадлежат к числу наиболее распространенных химических реакций и имеют огромное значение в теории и практике. Окисление-восстановление-один из важнейших процессов природы.

К вопросу о металлической связи в плотнейших упаковках химических элементов Г.Г.Филипенко Гродно АННОТАЦИЯ. Обычно в литературе металлическая связь описывается, как осуществленная посредством обобществления внешних электронов атомов и не обладающая свойством направленности. Хотя встречаются поп...

Ковалентная связь – это связь между двумя атомами за счет образования общей электронной пары.

Ковалентная неполярная связь эта связь между атомами с равной

электроотрицательностью. Например: Н 2 , О 2 , N 2 , Cl 2 и т. д. Дипольный момент таких связей равен нулю.

Ковалентная полярная связь эта связь между атомами с различной электроотрицательностью. Зона перекрывания электронных облаков смещается в сторону более электроотрицательного атома.

Например, Н–Cl (Н б+ →Cl б–).

Ковалентная связь обладает свойствами:

- насыщаемости – способности атома образовывать количество химических связей, соответствующих его валентности;

- направленности – перекрытие электронных облаков происходит в направлении обеспечивающем максимальную плотность перекрытия.

Ионная связь это связь между противоположно заряженными ионами. Её можно рассматривать как крайний случай ковалентной полярной связи. Такая связь возникает при большой разнице электроотрицательностей атомов,

образующих химическую связь. Например, в молекуле NaF разница

электроотрицательностей составляет 4,0 0,93 = 3,07, что приводит к практически полному переходу электрона от натрия к фтору:

Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщаемости. В силу этого иoннaя связь не обладает направленностью и насыщаемостью.

Металлическая связь это связь положительно заряженных ионов металла со свободными электронами .

Большинство металлов обладает рядом свойств, имеющих общий характер и отличающихся от свойств других веществ. Такими свойствами являются сравнительно высокие температуры плавления, способность к отражению света, высокая тепло- и электропроводность. Это является следствием образования между атомами металлов особого вида связи – металлической связи.

У атомов металлов валентные электроны слабо связаны со своими ядрами и могут легко отрываться от них. В результате этого в кристаллической решетке металла появляются положительно заряженные ионы металла и «свободные» электроны, электростатическое взаимодействие которых обеспечивает химическую связь.

Водородная связь это связь посредством атома водорода, связанного с высокоэлектроотрицательным элементом .

Атом водорода, связанный с высокоэлектроотрицательным элементом (фтором, кислородом, азотом и др.), отдает практически полностью электрон с валентной орбитали. Образовавшаяся свободная орбиталь может взаимодействовать с неподеленной парой электронов другого электроотрицательного атома, в результате возникает водородная связь. На примере молекул воды и уксусной кислоты водородная связь показана штриховыми линиями:

Эта связь значительно слабее других химических связей (энергия ее образования 10÷40 кДж/моль). Водородные связи могут возникать как между различными молекулами, так и внутри молекулы.

Исключительно важную роль водородная связь играет в таких неорганических веществах, как вода, плавиковая кислота, аммиак и т.д., а также в биологических макромолекулах.

Основные типы химической связи.

Вам известно, что атомы могут соединяться друг с другом с образованием как простых, так и сложных веществ. При этом образуются различного типа химические связи: ионная, ковалентная (неполярная и полярная), металлическая и водородная. Одно из наиболее существенных свойств атомов элементов, определяющих, какая связь образуется между ними – ионная или ковалентная, - это электроотрицательность, т.е. способность атомов в соединении притягивать к себе электроны.
Условную количественную оценку электроотрицательности дает шкала относительных электроотрицательностей.
В периодах наблюдается общая тенденция роста электроотрица-тельности элементов, а в группах – их падения. Элементы по электроот-рицательностям располагают в ряд, на основании которого можно сравнить электроотрицательности элементов, находящихся в разных периодах.
Тип химической связи зависит от того, насколько велика разность значений электроотрицательностей соединяющихся атомов элементов. Чем больше отличаются по электроотрицательности атомы элементов, образующих связь, тем химическая связь полярнее. Провести резкую границу между типами химических связей нельзя. В большинстве соединений тип химической связи оказывается промежуточным; например, сильнополярная ковалентная химическая связь близка к ионной связи. В зависимости от того, к какому из предельных случаев ближе по своему характеру химическая связь, ее относят либо к ионной, либо к ковалентной полярной связи.

Ионная связь.

Ионная связь образуется при взаимодействии атомов, которые резко отличаются друг от друга по электроотрицательности. Например, типичные металлы литий(Li), натрий(Na), калий(K), кальций (Ca), стронций(Sr), барий(Ba) образуют ионную связь с типичными неметаллами, в основном с галогенами.
Кроме галогенидов щелочных металлов, ионная связь также образуется в таких соединениях, как щелочи и соли. Например, в гидроксиде натрия(NaOH) и сульфате натрия(Na 2 SO 4 ) ионные связи существуют только между атомами натрия и кислорода (остальные связи – ковалентные полярные).

Ковалентная неполярная связь.

При взаимодействии атомов с одинаковой электроотрица-тельностью образуются молекулы с ковалентной неполярной связью.
Такая связь существует в молекулах следующих простых веществ: H 2 , F 2 , Cl 2 , O 2 , N 2 . Химические связи в этих газах образованы посредством общих электронных пар, т.е. при перекрывании соответствующих электронных облаков, обусловленном электронно-ядерным взаимодей-ствием, которые осуществляет при сближении атомов.
Составляя электронные формулы веществ, следует помнить, что каждая общая электронная пара – это условное изображение повышенной электронной плотности, возникающей в результате перекрывания соответствующих электронных облаков.

Ковалентная полярная связь.

При взаимодействии атомов, значение электроотрецательностей которых отличаются, но не резко, происходит смещение общей электронной пары к более электроотрицательному атому. Это наиболее распространенный тип химической связи, которой встречается как в неорганических, так и органических соединениях.
К ковалентным связям в полной мере относятся и те связи, которые образованы по донорно-акцепторному механизму, например в ионах гидроксония и амония.

Металлическая связь.

Связь, которая образуется в результате взаимодействия относите-льно свободных электронов с ионами металлов, называются металлической связью. Этот тип связи характерен для простых веществ- металлов.
Сущность процесса образования металлической связи состоит в следующем: атомы металлов легко отдают валентные электроны и превращаются в положительные заряженные ионы. Относительно свобо-дные электроны, оторвавшиеся от атома, перемещаются между положи-тельными ионами металлов. Между ними возникает металлическая связь, т. е. Электроны как бы цементируют положительные ионы кристал-лической решетки металлов.

Водородная связь.

Связь, которая образуется между атомов водорода одной молекулы и атомом сильно электроотрицательного элемента (O, N, F) другой молекулы, называется водородной связью.
Может возникнуть вопрос: почему именно водород образует такую специфическую химическую связь?
Это объясняется тем, что атомный радиус водорода очень мал. Кроме того, при смещении или полной отдаче своего единственного электрона водород приобретает сравнительно высокий положительный заряд, за счет которого водород одной молекулы взаимодействует с атомами электроотрицательных элементов, имеющих частичный отрицательный заряд, выходящий в состав других молекул (HF, H 2 O, NH 3 ).
Рассмотрим некоторые примеры. Обычно мы изображаем состав воды химической формулой H
2 O. Однако это не совсем точно. Правильнее было бы состав воды обозначать формулой (H 2 O)n, где n = 2,3,4 и т. д. Это объясняется тем, что отдельные молекулы воды связаны между собой посредством водородных связей.
Водородную связь принято обозначать точками. Она гораздо более слабая, чем ионная или ковалентная связь, но более сильная, чем обычное межмолекулярное взаимодействие.
Наличие водородных связей объясняет увеличения объема воды при понижении температуры. Это связано с тем, что при понижении температуры происходит укрепление молекул и поэтому уменьшается плотность их "упаковки".
При изучении органической химии возникал и такой вопрос: почему температуры кипения спиртов гораздо выше, чем соответствующих углеводородов? Объясняется это тем, что между молекулами спиртов тоже образуются водородные связи.
Повышение температуры кипения спиртов происходит также всле-дствие укрупнения их молекул.
Водородная связь характерна и для многих других органических соединений (фенолов, карбоновых кислот и др.). Из курсов органической химии и общей биологии вам известно, что наличием водородной связи объясняется вторичная структура белков, строение двойной спирали ДНК, т. е. явление комплиментарности.