В домашних условиях

Сцинтилляционный детектор. Сцинтилляционные детекторы Импульсная ионизационная камера

Частиц, действие к-рого основано на регистрации световых вспышек в видимой или УФ-области, возникающих при прохождении заряж. частиц через сцинтиллятор. Доля энергии, конвертированная в световую вспышку от полной энергии (), потерянной частицей в сцинтиллято-ре, наз. к о н в е р с и о н н о й э ф ф е к т и в н о с т ь ю. Она является осн. параметром С. д. Иногда вместо конверсионной эффективности используют уд. световой выход (свето-выход) - число образованных частицей фотонов на единицу потерянной энергии , или ср. энергию, расходуемую на образование одного фотона, w ф =w/С к.

Здесь -ср. энергия фотонов световой вспышки ( 3 эВ).

Для наиб. эфф. сцинтилляторов значение С к достигает 0,1-0,3. Конверсионная эффективность зависит от типа регистрируемой частицы и от её уд. потерь энергии. Для данного сцинтиллятора С к может зависеть от темп-ры T , наличия примесей и соотношения разл. компонент в сцинтилляторе.

С. д. обладает спектроскопич. свойствами, т. е. интенсивность световой вспышки пропорциональна энергии, потерянной частицей в широкой области энергии. Только в области малых энергий, где резко возрастает уд. потеря энергии, световыход падает и пропорциональность нарушается.

Механизмы преобразования энергии частицы в световую вспышку различны для разных сцинтилляторов. В большинстве случаев они могут быть сведены к след. (упрощённой) схеме: 1) и возбуждение атомов и молекул, образование радикалов; 2) перенос энергии возбуждения к центрам свечения (радиационный, резонансный, экситон-ный, электронно-дырочный); 3) возбуждение и высвечивание центров свечения. Нейтральные частицы регистрируются благодаря передаче энергии заряженным: g-кванты- по электронам и позитронам (см. Гамма-излучение) , нейтроны - по протонам отдачи (при упругом рассеянии) или по заряж. частицам, возникающим в ядерных реакциях нейтронов с веществом сцинтиллятора.


Рис. 1. Схема сцинтилляционного детектора: Сц - сцинтиллятор, Св-светопровод, Ф - фотокатод , Д - диноды, А - анод .

Осн. элементы С. д. (рис. 1) - сцинтиллятор и соединённый с ним оптически фоторегистратор, преобразующий энергию световой вспышки в электрич. импульс. В качестве фоторегистратора обычно используют фотоэлектронный умножитель (ФЭУ). Световые фотоны, попадая на ФЭУ, выбивают из него электроны, к-рые фокусируются на 1-й динод, размножаются динодной системой в результате процесса вторичной электронной эмиссии и окончательно собираются на аноде ФЭУ, создавая в его цепи электрич. импульс.

Спектрометрич. и амплитудные характеристики С. д. определяются числом электронов, попавших на 1-й динод ФЭУ, к-рое можно рассчитать по ф-ле N 1 = ab g/w ф. Здесь а -доля фотонов, попадающих на фотокатод, g-квантовый выход фотокатода (для лучших мультищелоч-ных катодов g = 0,15-0,2), b 0,5-0,8 - доля электронов, собранных на 1-й динод. Макс. амплитуда импульса на сопротивлении в анодной цепи ФЭУ: A макс = N 1 Me /С , где М -коэф. усиления ФЭУ, С -ёмкость анода; М может достигать значения ~10 8 , что позволяет регистрировать события, в результате к-рых на 1-й динод приходит всего 1 электрон. Иногда между сцинтиллятором и ФЭУ устанавливается (для улучшения равномерности светового сбора, выноса ФЭУ из области эл--магн. поля и др.).

Помимо ФЭУ в качестве фоторегистратора могут использоваться вакуумный (в интегральном режиме) или полупроводниковый фотоэлементы .В первых экспериментах при регистрации a-частиц с помощью ZnS световые вспышки регистрировались непосредственно глазом.

Для оптимальной регистрации световой вспышки её спектр и спектральная чувствительность фотокатода долж-

ны быть близки, а сцинтиллятор должен быть прозрачен для . Прозрачность сцинтиллятора характеризуется расстоянием, на к-ром интенсивность его светового излучения уменьшается в результате поглощения в е раз. Для увеличения числа фотонов, падающих на фотокатод ФЭУ, и улучшения равномерности светосбора по объёму сцинтиллятора поверхность последнего покрывают отражателем (MgO, TiO 2 , тефлон) или используют полное внутр. отражение от полиров. граней кристалла.

Интенсивность световой вспышки в зависимости от времени меняется по закону I=I 0 ехр(-t /t), где t - время, за к-рое интенсивность уменьшается в е раз, называемое временем высвечивания сцинтиллятора; t определяет временные характеристики С. д. Время высвечивания определяется процессами преобразования энергии частицы в световую вспышку, и часто из-за неск. процессов возникает неск. компонент с разл. t. Соотношение интенсивностей разл. компонент высвечивания отличается для лёгких (электронов) и тяжёлых (протонов, a-частиц и т. д.) частиц, особенно для органич. сцинтилляторов (см. ниже), что приводит к разл. форме импульса для этих частиц. Это позволяет при регистрации по форме импульса разделять частицы разной природы при одинаковой амплитуде импульса.

Зависимость световыхода от типа регистрируемых частиц характеризуют отношением a/b-отношением световыхода a-частицы и электрона при одинаковых энергиях. Отношение a/b различно для разных типов сцинтилляторов и зависит от энергии частиц.

С. д. применяются как в виде самостоят. детекторов, так и в качестве составных компонентов комбинированных систем детекторов при исследовании разл. процессов с энергиями >= неск. КэВ.

Неорганические сцинтилляторы - монокристаллы с добавкой активатора. Они обладают высокими эффективностью Z, r и достаточно большой длительностью высвечивания t (табл. 1).

Табл. 1.- Характеристика неорганических сцинтилляторов


Наиб. световыходом обладают кристаллы ZnS(Ag), но они существуют только в виде мелкокристаллич. порошка (кристаллы больших размеров получить не удаётся), прозрачность к-рых для собств. излучения мала. Одним из лучших неорганич. сцинтилляторов является NaI (Tl). Он имеет наибольший после ZnS (Ag) световыход и прозрачен для собств. излучения. Монокристаллы NaI(Tl) могут быть выращены больших размеров (до 500 мм); их недостаток-гигроскопичность, требующая герметизации. Сцинтиллятор CsI(Tl) имеет световыход ниже, но не гигроскопичен. Помимо этих универсально используемых неорганич. сцинтилляторов существует ряд других, применение к-рых диктуется условиями эксперимента - присутствием определ. элементов, большим или, наоборот, малым сечением захвата тепловых нейтронов (см. Нейтронные детекторы )и др. Перспективны сцинтилляторы на основе BaF 2 и Bi 4 Ge 3 O 12 (гигроскопичны, могут быть выращены размерами до неск. десятков см), неактивированные кристаллы галлоидов щелочных металлов при Т -200° С. Напр., кристаллы NaI имеют тот же световыход, что и NaI (Tl) при Т= 300 К, но t на порядок меньше. Механизм высвечивания неорганич. сцинтилляторов иллюстрирует зонная диаграмма ионных кристаллов (рис. 2). Внутри запрещённой энергетич. зоны (см. Зонная теория ) могут быть дискретные уровни энергии ионов активатора (напр., Тl для NaI), а также других неизбежных примесей и дефектов кристаллич. решётки. При прохождении заряж. частицы электроны могут получать энергию, достаточную для перехода из валентной зоны в экситонную зону и зону проводимости. Обратные переходы электронов в зону валентности с промежуточным захватом на дискретных уровнях запрещённой зоны приводят к испусканию оптич. фотонов. Поскольку их энергия меньше ширины запрещённой зоны , а плотность дискретных уровней мала, кристалл оказывается для них прозрачным. Световыход зависит от концентрации активатора В (рис. 3). Уменьшение световыхода при больших концентрациях связано с ростом вероятности поглощения фотонов на активаторных уровнях. Время высвечивания t с ростом концентрации активатора до 3 10 -3 уменьшается от 0,35 до 0,22 мкс.

Рис. 2. Зонная диаграмма ионного кристалла .

Рис. 3. Зависимость световыхода С к кристалла NaI от концентрации Тl .


Рис. 4. Спектр импульсов от NaI(Tl) для =661 КэВ .

Большая плотность р и высокий атомный номер Z обусловливают осн. применение С. д. на основе неорганич. сцинтилляторов для регистрации и g-из-лучения (рис. 4). Спектр монохроматич. g-излучения состоит из т. н. пика полного поглощения (полное поглощение g-кванта) и комптоновского распределения (см. Комптона эффект ),соотношение к-рых зависит от размера кристалла. Энергетич. разрешение пика полного поглощения складывается из флуктуации числа электронов, собранных на 1-й динод ФЭУ, дисперсии ФЭУ и т.н. собств. разрешения кристалла. Последнее определяется помимо неравномерности процесса светосбора флуктуациями числа и энергии комптоновских и d-электронов при образовании пика полного поглощения, зависит от размера кристалла и составляет величину ~ неск. %. Полное разрешение для энергии g-квантов от 137 Cs ( =661 КэВ) для лучших кристаллов порядка 7%. С изменением регистрируемой энергии разрешение меняется по закону . Пропорциональность между интенсивностью световой вспышки и "потерянной" энергией при регистрации электронов и у-квантов в NaI (Тl) имеет место при > 100 КэВ. При меньших энергиях световыход сложным образом зависит от уд. потерь энергии.

Табл. 2.- Характеристика органических сцинтилляторов


В органич. сцинтилляторах высвечивание фотонов связано с электронными переходами возбуждённых молекул. Органич. сцинтилляторы характеризуются малой эффективностью Z~6, сравнительно небольшой плотностью р и малой длительностью высвечивания т (табл. 2). Последнее делает их удобными для временных измерений. Наиб. световыход достигается на антрацене, значение к-рого при сравнении с др. органич. сцинтилляторами часто принимается за 1.

На основе пластич. и жидких сцинтилляторов создаются С. д. больших поверхности и объёма и требуемой формы. Как правило, они состоят из 2-3 компонент: прозрачной пластмассы (полистирол, поливинилтолуол, метилметак-рилат) или органич. растворителей (наиб. световыход у ксилола и толуола) и сцинтиллирующей добавки или активатора (p -терфенил, 2,5-дифенилоксазол, тетрафенил-бутадиен, стильбен, нафталин, бифенил) с концентрацией 1 -10 г/л; иногда добавляют т. н. смеситель спектра (5-фенил-2, оксазолил бензол - РОРОР) с концентрацией 0,01-0,5 г/л для согласования спектра световой вспышки со спектральной чувствительностью фотокатода.

Активатор и растворитель подбирают так, чтобы 1-й возбуждённый уровень растворителя был выше 1-го уровня активатора. Тогда возможна передача энергии возбуждения от молекул растворителя к молекулам активатора. При увеличении концентрации активатора световыход сначала возрастает, затем, пройдя через максимум, начинает уменьшаться, что связано с увеличением вероятности самопоглощения света молекулами активатора. В жидкие и пластич. сцинтилляторы можно добавлять (неск. %) др. вещества, напр. исследуемые радиоакт. изотопы или при регистрации тепловых нейтронов Li, В, Gd, Cd.

Световыход органич. сцинтилляторов различен для лёгких и тяжёлых частиц при энергиях < 10 МэВ, a/b0,1. Сцинтилляционный импульс в органич. сцинтилляторах обычно содержит 2 компоненты: быструю (t~10 с) и медленную (t~10 -7 -10 -5 с). Относит. интенсивности компонент зависят от природы частиц, что приводит к различию в форме импульса для тяжёлых и лёгких частиц (рис. 5). На этом различии основан метод регистрации быстрых нейтронов по протонам отдачи на фоне потока g-квантов.

Рис. 5. Форма импульса в органических сцинтилляторах для электронов, протонов и a-частиц .

Зависимость световыхода от уд. потерь энергии описывается ф-лой Биркса:


где А и В - постоянные.

Калибровка С. д. на основе органич. сцинтилляторов осуществляется в области малых энергий с помощью источников конверсионных электронов и g-источников, а в области высоких энергий - с помощью разл. процессов, связанных с релятивистскими частицами (распад остановившихся мюонов , прохождение релятивистскими частицами определ. линейного расстояния и др.).

Высокая прозрачность жидких сцинтилляторов позволяет создавать на их основе С. д. с размерами в неск. метров и массой вплоть до неск. сотен тонн, напр. в экспериментах по регистрации нейтрино. В этом случае часто используется сцинтиллятор на основе уайт-спирита (очищенный керосин). Его прозрачность s = 20 м. На основе уайт-спирита созданы крупнейшие подземные С. д. для комплексного изучения космич. лучей и нейтринной астрофизики: баксан-ский Сцинтилляционный телескоп (330 т), 105-тонный подземный С. д., расположенный в подземном помещении вблизи г. Артёмовск; российско-итальянский С. д. в туннеле под Монбланом (90 т).

Газовые сцинтилляторы - инертные газы и их смеси в газообразном, жидком и твёрдом состояниях. Центрами свечения являются возбуждённые молекулы. Инертные газы характеризуются короткими временами высвечивания (t~10 -8 -10 -9 с) и высоким световыходом, так световыход Хе того же порядка, что и у Nal(Tl). Осн. доля излучения инертных газов лежит в области вакуумного ультрафиолета (l~200 нм), поэтому регистрация таких фотонов требует ФЭУ с кварцевым входным окном либо нанесения на входное окно смесителя спектра (дифенил-стильбен или кватерфенил). Осн. применение газовых С. д.- регистрация a-частиц и осколков деления (см. Деление ядер ).

Другие типы С. д . Существ. влияние на световыход сцин-тиллятора оказывает электрич. поле. При приложении достаточно сильного поля возникающие при прохождении заряж. частицы электроны могут приобретать энергию, достаточную для возбуждения и ионизации атомов, что в конечном итоге приведёт к увеличению числа фотонов в световой вспышке. Этот принцип лежит в основе сцин-тилляционного пропорционального счётчика. Его преимущество- высокое энергетич. разрешение в области малых энергий.

Лит.: Сцинтилляционный метод в , М., 1961; Абрамов А. И., Казанский Ю. А., Матусевич Е. С., Основы экспериментальных методов , 3 изд., М., 1985; Ляпидевский В. К., Методы детектирования излучений, М., 1987.

И. Р. Барабанов .

Сцинтилля́торы - вещества, обладающие способностью излучать свет при поглощении ионизирующего излучения (гамма-квантов , электронов , альфа-частиц и т. д. ). Как правило, излучаемое количество фотонов для данного типа излучения приближённо пропорционально поглощённой энергии, что позволяет получать энергетические спектры излучения. Сцинтилляционные детекторы ядерных излучений - основное применение сцинтилляторов. В сцинтилляционном детекторе свет, излученный при сцинтилляции, собирается на фотоприёмнике (как правило, это фотокатод фотоэлектронного умножителя - ФЭУ , значительно реже используются фотодиоды и другие фотоприёмники), преобразуется в импульс тока, усиливается и записывается той или иной регистрирующей системой.

Характеристики сцинтилляторов [ | ]

Световыход [ | ]

Световыход - количество фотонов, излучаемых сцинтиллятором при поглощении определённого количества энергии (обычно 1 МэВ ). Большим световыходом считается величина 50-70 тыс. фотонов на МэВ. Однако для детектирования высокоэнергичных частиц могут использоваться и сцинтилляторы со значительно меньшим световыходом (например, вольфрамат свинца).

Спектр высвечивания [ | ]

Спектр высвечивания должен быть оптимально согласован со светочувствительностью используемого фотоприёмника, чтобы не терять лишний свет. Несогласованный с чувствительностью приёмника спектр высвечивания негативно сказывается на энергетическом разрешении.

Энергетическое разрешение [ | ]

Даже при поглощении частиц с одинаковой энергией амплитуда импульса на выходе фотоприёмника сцинтилляционного детектора меняется от события к событию. Это связано 1) со статистическим характером процессов сбора фотонов на фотоприёмнике и последующего усиления, 2) с различной вероятностью доставки фотона к фотоприёмнику из разных точек сцинтиллятора, 3) с разбросом высвечиваемого числа фотонов. В результате в набранном спектре линия (которая для идеального детектора представляла бы дельта-функцию) оказывается размытой, её часто можно представить в виде гауссианы с дисперсией σ 2 . В качестве характеристики энергетического разрешения детектора используются сигма (квадратный корень из дисперсии) и, чаще, полная ширина линии на половине высоты (FWHM, от англ. Full Width on Half Maximum ; иногда называется полушириной), отнесённые к медиане линии и выраженные в процентах. FWHM гауссианы в 2 2 ln ⁡ 2 ≈ 2 , 355 {\displaystyle 2{\sqrt {2\ln 2}}\approx 2,355} раза больше σ . Поскольку энергетическое разрешение зависит от энергии (как правило, оно пропорционально E −1/2), его следует указывать для конкретной энергии. Чаще всего разрешение указывают для энергии гамма-линии цезия-137 (661.7 кэВ ).

Время высвечивания [ | ]

Типичная кривая высвечивания неорганического сцинтиллятора, возбуждённого поглощением быстрой заряженной частицы. После кратковременной яркой вспышки свечение относительно медленно затухает.

Время, в течение которого поглощённая в сцинтилляторе, возбуждённого прохождением быстрой заряженной частицы энергия преобразуется в световое излучение, называют временем высвечивания. Зависимость высвечивания сцинтилляторов от времени с момента поглощения частицы (кривая высвечивания) обычно может быть представлена как убывающая экспонента или, в общем случае, как сумма нескольких убывающих экспонент:

I ∼ ∑ i A i exp ⁡ (− t / τ i) {\displaystyle \displaystyle I\sim \sum _{i}A_{i}\exp(-t/\tau _{i})}

Слагаемое в формуле с наибольшей амплитудой A i {\displaystyle \displaystyle A_{i}} и постоянной времени τ i {\displaystyle \tau _{i}} характеризует общее время высвечивания сцинтиллятора. Почти все сцинтилляторы после быстрого высвечивании имеют медленно спадающий «хвост» послесвечения, что зачастую является недостатком, с точки зрения временного разрешения, скорости счёта регистрируемых частиц.

Обычно сумму многих экспонент в приведённой формуле с достаточной для практики точностью можно представить в виде суммы двух экспонент:

I = A exp ⁡ (− t τ f) + B exp ⁡ (− t τ s) {\displaystyle I=A\exp \left(-{\frac {t}{{\tau }_{f}}}\right)+B\exp \left(-{\frac {t}{{\tau }_{s}}}\right)}

где τ f {\displaystyle \tau _{f}} постоянная времени «быстрого» высвечивания, τ s {\displaystyle \tau _{s}} постоянная времени «медленного» высвечивания, A {\displaystyle A} и B {\displaystyle B} - амплитуды свечения и послесвечения соответственно.

Амплитуды свечения и послесвечения зависят от энергии, поглощённой в сцинтилляторе, ионизирующей способности быстрых частиц и гамма-квантов. Например, в сцинтилляторах изготовленных из легированного фторида бария амплитуда свечения, вызванного поглощением гамма-кванта существенно превышает амплитуду свечения, вызванного поглощением альфа-частицы , при поглощении которой наоборот, превалирует амплитуда послесвечения. Это явление позволяет различать природу ионизирующего излучения.

Типичное время высвечивания неорганических сцинтилляторов - от сотен наносекунд до десятков микросекунд. Органические сцинтилляторы (пластиковые и жидкие) высвечиваются в течение наносекунд.

Радиационная прочность [ | ]

Облучаемые сцинтилляторы постепенно деградируют. Доза облучения, которую может выдержать сцинтиллятор без существенного ухудшения свойств, называется радиационной прочностью.

Квенчинг-фактор [ | ]

Частицы разной природы, но с одинаковой энергией при поглощении в сцинтилляторе дают, вообще говоря, различный световыход. Частицы с высокой плотностью ионизации (протоны , альфа-частицы, тяжёлые ионы , осколки деления) дают в большинстве сцинтилляторов меньшее количество фотонов, чем гамма-кванты, бета-частицы , мюоны или рентген . Отношение световыхода данного типа частиц к световыходу гамма-квантов с равной энергией называется квенчинг-фактором (от англ. quenching - «тушение»). Квенчинг-фактор электронов (бета-частиц) обычно близок к единице. Квенчинг-фактор для альфа-частиц называют α/β -отношением; для многих органических сцинтилляторов он близок к 0,1.

Неорганические сцинтилляторы [ | ]

Чаще всего в качестве сцинтилляторов используются неорганические монокристаллы. Иногда для увеличения световыхода в кристалл вводят так называемый активатор (или допант). Так, в сцинтилляторе NaI(Tl) в кристаллической матрице иодида натрия содержатся активирующие центры таллия (примесь на уровне сотых долей процента). Сцинтилляторы, которые светятся без активатора, называются собственными .

Сцинтилляторы
Время
высвечивания,
мкс
Максимум
спектра высвечивания,
нм
Коэффициент
эффективности
(по отношению
к антрацену)
Примечание
NaI () 0,25 410 2,0 гигроскопичен
CsI () 0,5 560 0,6 фосфоресценция
LiI () 1,2 450 0,2 очень гигроскопичен
LiI () очень гигроскопичен
ZnS () 1,0 450 2,0 порошок
CdS () 1,0 760 2,0 небольшие
монокристаллы

Неорганические керамические сцинтилляторы [ | ]

Прозрачные керамические сцинтилляторы получают из прозрачных керамических материалов на базе оксидов Al 2 O 3 (Лукалокс), Y 2 O 3 (Иттралокс) и производных оксидов Y 3 Al 5 O 12 и YAlO 3 , а также MgO, BeO.

Органические сцинтилляторы [ | ]

Органические сцинтилляторы обычно представляют собой двух- − трёхкомпонентные смеси. Первичные центры флуоресценции возбуждаются за счёт потери энергии налетающими частицами. При распаде этих возбуждённых состояний излучается свет в ультрафиолетовом диапазоне длин волн. Длина поглощения этого ультрафиолета, однако, весьма мала: центры флуоресценции непрозрачны для их собственного излученного света.

Вывод света осуществляется добавлением к сцинтиллятору второго компонента, поглощающего первично излученный свет и переизлучающего его изотропно с большими длинами волн (так называемого сместителя спектра, или шифтера).

Две активных компоненты в органических сцинтилляторах или растворяются в органической жидкости или смешиваются с органическим материалом так, чтобы образовать полимерную структуру. При такой технологии можно производить жидкий или пластиковый сцинтиллятор любой геометрической формы. В большинстве случаев изготавливаются листы сцинтиллятора толщиной от 1 до 30 мм.

Органические сцинтилляторы имеют гораздо меньшие времена высвечивания (порядка единиц - десятков наносекунд) по сравнению с неорганическими, но имеют меньший:

Также существуют другие органические сцинтилляторы, например американской компании. Сцинтилляторы Bicron BC 400…416 производятся на основе.

Газовые сцинтилляторы [ | ]

Газовые сцинтилляционные счетчики используют свет, излученный атомами, которые возбуждаются в процессе взаимодействия с ними заряженных частиц и затем возвращаются в основное состояние. Времена жизни возбужденных уровней лежат в наносекундном диапазоне. Световыход в газовых сцинтилляторах в силу их низких плотностей сравнительно невысок. Однако в качестве газовых сцинтилляторов могут также применяться сжиженные инертные газы.

Наши задачи: познакомить с основными видами детекторов ядерных излучений.

Детекторы ядерных излучений - это приборы для регистрации альфа- и бета-частиц, рентгеновского и гамма-излучения, нейтронов, протонов и т.п. Служат для определения состава излучения и измерения его интенсивности, измерения спектра энергий частиц, изучения процессов взаимодействия быстрых частиц с атомными ядрами и процессов распада нестабильных частиц. В основе регистрации лежат процессы взаимодействия излучений с веществом .

Все детекторы ядерных излучений можно разделить на три группы: счетчики частиц, следовые детекторы и детекторы, у которых под действием излучений изменяются какие-либо измеряемые свойства.

Основными характеристиками детектора являются – эффективность (вероятность регистрации частицы при попадании её в детектор), временное разрешение (минимальное время, в течение которого детектор фиксирует две частицы как отдельные) и мёртвое время или время восстановления (время, в течение которого детектор после регистрации частицы либо вообще теряет способность к регистрации следующей частицы, либо существенно ухудшает свои характеристики). Если детектор определяет энергию частицы и (или) её координаты, то он характеризуется также энергетическим разрешением (точностью определения энергии частицы) и пространственным разрешением (точностью определения координаты частицы).

Импульсная ионизационная камера

происходит регистрация. Внутреннее сопротивление камеры очень велико и она является источником тока (ток во внешней цепи практически не зависит от сопротивления последней). Уравнение для напряжения U(t) на сопротивлении R (и, конечно, на емкости C , это емкость камеры) выглядит следующим образом:

Зависимость тока в цепи от времени i(t) определяется расположением траектории частицы в камере. В простейшем случае, когда траектория параллельна пластинам камеры (как на рисунке), ток постоянен, пока ионы, образованные регистрируемой частицей, не достигнут электродов (рис.2). Решение уравнения (1) в этом случае

где t 0 время собирания носителей заряда. Форма импульса показана на рис.3 Обычно камеру наполняют инертным газом, в котором

при ионизации образуется положительный ион и электрон. Собирают электроны, которые обладают большой подвижностью и обеспечивают быстродействие камеры. Амплитуда импульса пропорциональна потери энергии заряженной частицы в объеме камеры ΔE

Здесь ω - работа образования одной пары ионов (~25 эВ для аргона). Нет проблем с усилением и регистрацией импульсов такой амплитуды. Энергетическое разрешение (точность определения значения энергии зарегистрированной частицы) определяется разбросом амплитуд, которое в свою очередь зависит от числа образованных пар ионов N , которое является случайным, возможны флуктуации числа N порядка √N

и составляет примерно 1%. Импульсные ионизационные камеры используют для регистрации тяжелых заряженных частиц (протонов, α -частиц...), пробег которых невелик и может уложиться в объеме камеры.

Пропорциональный счетчик

Энергию электронов в ионизационной камере не измерить: энергия электрона должна быть мала, чтобы пробег укладывался в объеме камеры, но тогда амплитуда импульса составит микровольты. Применяют газовое усиление .

Газовое усиление это увеличение количества свободных зарядов в объёме детектора за счёт того, что первичные электроны на своём пути к аноду в больших электрических полях приобретают энергию, достаточную для ударной ионизации нейтральных

атомов рабочей среды детектора (для этого надо, чтобы на длине свободного пробега λ в электрическом поле напряженностью E электрон набирал энергию, бо́льшую энергии ионизации атома eE λ > E ион ). Возникшие при этом новые электроны в свою очередь успевают приобрести энергию достаточную для ионизации ударом. Таким образом, к аноду будет двигаться нарастающая электронная лавина. Коэффициент газового усиления может достигать 10 3 - 10 4 . В названии счетчика отражено то, что в этом приборе амплитуда импульса тока (или полный собранный заряд) остаётся пропорциональной энергии, затраченной заряженной частицей на первичную ионизацию среды детектора. Таким образом, пропорциональный счётчик способен выполнять функции спектрометра, как и ионизационная камера.

В пропорциональном счётчике обычно катодом служит цилиндр, а анодом - тонкая (10-100 мкм) металлическая нить, натянутая по оси цилиндра (см. рис.4). Распределение напряженности поля E по радиусу выглядит следующим образом:

То есть условия для ударной ионизации выполняются только в узкой области около анода. В остальной, бо́льшей части объема электроны просто дрейфуют к аноду. Этим достигается независимость амплитуды импульса от траектории пролета в счетчике. Газовый разряд несамостоятельный, т.е. такой, что гаснет при прекращении внешней ионизации.

Пропорциональные счетчики используются в основном для измерения излучения малых энергий (порядка десятков килоэлектронвольт). Пропорциональный счетчик может быть использован и для регистрации нейтронов при наполнении, например, газом BF. Нейтроны регистрируются по продуктам реакции n + B → Li + He (с выделением энергии 2.8 МэВ), эффективное сечение которой очень велико.

Счетчик Гейгера-Мюллера

Счетчики Гейгера-Мюллера - самые распространенные детекторы ионизирующего излучения. Газовый разряд в них самостоятельный, т.е. такой, что, возникнув, будет существовать и без внешней ионизации, если не принять меры для его гашения. Конструктивно счётчик Гейгера устроен также как пропорциональный счётчик, т.е. представляет собой цилиндрический конденсатор, заполненный инертным газом (рис.4). К внутреннему электроду (тонкой металлической нити) приложен положительный потенциал, к внешнему – отрицательный. Функционально счётчик Гейгера также в основном повторяет пропорциональный счётчик, но отличается от последнего тем, что за счёт более высокой разности потенциалов на электродах работает в таком режиме, когда достаточно появления в объёме детектора одного электрона, чтобы развился мощный лавинообразный процесс, обусловленный вторичной ионизацией.

В пропорциональном счётчике газовый разряд развивается только в части объёма газа. В ней частица производит первичную ионизацию, а затем и лавину электронов. С повышением напряжения (в счетчике Гейгера-Мюллера сотни вольт) критическая область расширяется. Возбужденные молекулы и ионы газа испускают фотоны, которые за счет фотоэффекта вырывают электроны из катода. Последние дают начало новым лавинам электронов в объёме счётчика, не занятом газовым разрядом от первичной ионизации. Электроны могут выбиваться из катода и положительными ионами в процессе нейтрализации, так как энергия ионизации атомов всегда больше работы выхода из металла катода. Возникает самостоятельный разряд, для гашения которого нужно принимать дополнительные меры. Например, добавление в трубку многоатомных газов (пары этилового спирта). Пары спирта интенсивно поглощают фотоны с энергиями, достаточными для вырывания фотоэлектронов. При этом молекула возбуждается и диссоциирует, не испуская электронов. Ионы аргона, сталкиваясь с молекулами спирта, нейтрализуются. Получившийся ион спирта на катоде разваливается, не вырывая электрон.

Счетчики с многоатомными газами называют самогасящимися . В несамогасящихся счетчиках с целью гашения газового разряда в анодную цепь включается высокоомное сопротивление нагрузки (порядка I0 8 - 10 9 Ом). Импульс тока счетчика, вызванный движением ионов, создает на этом сопротивлении большое падение напряжения, поэтому напряжение на аноде счетчика значительно уменьшается и разряд прекращается.

В счетчиках Гейгера-Мюллера (с самостоятельным разрядом) амплитуда выходного импульса достигает десятков вольт и НЕ зависит от начальной ионизации. Такой прибор пригоден только для счета частиц. Разрешающее время у этих счетчиков довольно велико: 10 -3 - 10 -5 с.

Важной технической характеристикой счетчика Гейгера-Мюллера является счетная характеристика - зависимость числа отсчетов от приложенного напряжения (рис.5). Эта характеристика имеет вид кривой с очень широким почти горизонтальным участком, называемым плато. Счет начинается с некоторого напряжения U 1 , т.к. при меньших электрическое поле недостаточно для начала электрического разряда. Счетчик тем лучше, чем шире плато и меньше его наклон. Рабочее напряжени выбирают в пределах плато, чтобы уменьшить влияние нестабильности источника питания.

Сцинтилляционный детектор

Сцинтилляции - латинское слово - это вспышки видимого света, вызываемые в веществе заряженными частицами. Действие сцинтилляционного детектора основано на регистрации фотонов, испускаемых возбужденными атомами. Первый сцинтилляционный детектор, названный спинтарископом, представлял собой экран, покрытый слоем ZnS . Вспышки, возникавшие при попадании в него заряженных частиц, фиксировались с помощью микроскопа. Именно с таким детектором проведен опыт по рассеянию альфа-частиц атомами золота, приведший к открытию атомного ядра.

Не каждый прозрачный материал годится в качестве сцинтиллятора, он должен быть прозрачен для собственного излучения. К таким относятся NaJ(Tl) , CsI , органические: антрацен (C 14 H 10), стильбен(C 14 H 12), нафталин(C 10 H 8). Регистрируемая заряженная частица попадает в кристалл и

тормозится в нем, возбуждая и ионизируя атомы. Последние, переходя в основное состояние, испускают фотоны. Все это за время порядка 10 -7 с. В хороших кристаллах несколько процентов энергии частицы переходит в световую. Кристалл в детекторе окружают отражателем так, что свет выходит только с одной стороны.

Для регистрации слабых световых вспышек используют фотоэлектронные умножители (ФЭУ) (рис.6). Создают оптический контакт между сцинтиллятором и торцом ФЭУ. Фотоны световой вспышки за счет фотоэффекта (см. лекцию) выбивают электроны из фотокатода (1), выполненного в виде тончайшей пленки на внутренней стороне колбы ФЭУ. Эти электроны фокусирующим электрическим полем направляются на промежуточный электрод (2), называемый динодом. Поверхность

динода покрыта материалом с большим коэффициентом вторичной электронной эмиссии. Каждый падающий электрон выбивает от 3 до 5 вторичных электронов. Всего динодов в ФЭУ более 10, что позволяет усиливать поток электронов в 10 5 и более раз. На аноде ФЭУ (8) возникает электрический импульс, который далее усиливается и регистрируется. Замечательной особенностью ФЭУ является хорошо соблюдаемая линейность усиления. Эквивалентная схема сцинтилляционного детектора изображена на рис.7. Уравнение, описывающее форму сигнала, приведено выше (см. формулу (1)). Зависимость тока от времени в этом уравнении определяется динамикой высвечивания сцинтиллятора и выглядит так

где τ - время высвечивания сцинтиллятора. Для неорганических сцинтилляторов это время порядка 10 -7 с, для органических - 10 -8 с, для пластических доходит до 10 -9 с. Амплитуда импульса при потере в сцинтилляторе энергии ΔE примерно равна

где η - световой выход сцинтиллятора (доля энергии, высвечиваемой в виде световой, для антрацена 0.05), ε - квантовый выход фотокатода ФЭУ (среднее число фотоэлектронов, выбиваемых на 1 фотон, величина порядка 0.1), K - коэффициент усиления ФЭУ (10 5 и более), - средняя энергия фотонов, образуемых в сцинтилляторе, C - емкость анода ФЭУ относительно земли (величина порядка 20 пФ), e - заряд электрона. Если взять типовые значения для перечисленных величин и энергию частицы, потерянной в детекторе, 5 МэВ, то амплитуда


Рис.8 Типичная форма спектра Cs-137
получится порядка 10 вольт.

Энергетическое разрешение сцинтилляционных детекторов ΔE/E обычно не лучше нескольких процентов, так как на образование одного фотоэлектрона требуется энергия hν/(η·ε) , равная примерно 500 эВ (сравните с 30 эВ для ионизационной камеры).

Открытие протона в лаборатории Резерфорда (1919г.) произошло путем наблюдения сцинтилляций, вызванных частицами в ядерной реакции α + 14 N → p + 17 O . С помощью сцинтилляционных счетчиков можно измерять энергетические спектры электронов и γ -лучей (на рис.8 форма спектра для моноэнергетических γ -квантов). Они применяются для измерения мощности дозы β - и γ -излучений, а также нейтронов. Достоинства сцинтилляционных счетчиков: высокая эффективность регистрации различных частиц (практически 100%); быстродействие; возможность изготовления сцинтилляторов разных размеров и конфигураций; высокая надёжность.

Большие объёмы сцинтилляторов позволяют создавать детекторы очень высокой эффективности для регистрации частиц с малым сечением взаимодействия с веществом (известен детектор с кристаллом NaJ(Tl) диаметром 0.75 м и длиной 1.5 м, просматриваемый большим числом ФЭУ). В знаменитом опыте Райнеса и Коэна по открытию нейтрино (1956) использовались три жидкостных сцинтиллятора объемом 1400 литров каждый.

Полупроводниковый детектор (ППД)

Полупроводниковый детектор работает подобно ионизационной камере с тем отличием, что ионизация происходит не в газовом промежутке, а в толще кристалла. Наибольшее распространение получили полупроводниковые детекторы из кристаллов кремния и германия. В кристалле за счет наличия областей с n - и p -проводимостями создается область, обедненная носителями (в ней электроны и дырки рекомбинируют). p -слой подсоединяется к отрицательному электроду, n -слой к положительному. Все носители оттягиваются от переходного слоя, диод заперт. Попав в эту область, заряженная частица вызывает ионизацию, соответственно в зоне проводимости появляются электроны, а в валентной зоне - дырки. Под действием напряжения, приложенного к напылённым на поверхность чувствительной зоны электродам, возникает движение электронов и дырок, формируется импульс тока. К полупроводниковому кристаллу прикладывается напряжение до нескольких кВ, что обеспечивает сбор всех зарядов, образованных частицей в объёме детектора. Заметим, что в действительности, положительно заряженные дырки не могут двигаться в кристаллическом твердом теле. На самом деле происходит следующее: дырки заполняются соседними электронами, которые движутся в противоположном направлении, оставляя позади новые дырки. Таким образом, кажется, что перемещаются дырки.

Энергия, затрачиваемая на образование пары электрон-дырка в полупроводниковом детекторе, меньше энергии образования пары электрон-ион в газах примерно в 10 раз. Следовательно, при полном торможении одной и той же частицы в импульсной камере и полупроводниковом детекторе амплитуда импульса в последнем примерно в 10 раз больше.

Подвижность электронов и дырок, а, значит, время собирания их на электродах детектора отличаются не более чем в 3 раза. Это позволяет осуществить полное собирание, как электронов, так и дырок. Время собирания электронов и дырок в ППД составляет 20-100 нс и значительно меньше времени собирания ионов в ИК. Поэтому ППД обладают хорошим быстродействием или малым разрешающим временем.

Благодаря малой энергии образования пары электрон-дырка ППД обладают очень хорошим энергетическим разрешением, для германиевых детекторов порядка 0.1%. На рис.10 результат измерения спектра γ -излучения 133 Ba сцинтилляционным детектором и полупроводниковым.



Рис.11 Устройство кремниевого микрострипового детектора

Для точного определения координат частиц используют полупроводниковые микростриповые детекторы. Они представляют собой пластины монокристалла кремния, на одну из поверхностей которых наносятся тонкие электроды (стрипы), отстоящие друг от друга на расстоянии ~20 мкм, а другая покрывается металлическим слоем (рис.11). В зависимости от места попадания заряженной частицы сигнал снимается с разных стрипов. Пространственное разрешение микростриповых детекторов достигает 10 мкм. Временное разрешение – 10 -8 с.

Недостатком ППД является малый размер чувствительной области, это не позволяет применить их для измерения частиц высоких энергий.

Характерные свойства счетчиков излучений можно свести в таблицу.

Характеристики счетчиков
Эффективность, % Энергетическое
разрешение, %
Разрешающее
время
Импульсная ионизационная камера 1÷3 10 -5
Пропорциональный счетчик ~ 1 10 -6
Счетчик Гейгера ~ 5 10 -4
Сцинтилляционный детектор ~ 100 5÷10 10 -9
Полупроводниковый детектор ~ 100
10 для γ -излучения
0.1 10 -8

Следовые детекторы

В следовых детекторах фиксируется трек, оставляемый региструемой частицей в рабочем веществе. По геометрии треков устанавливается число заряженных частиц, участвовавших в реакции, и направления их движения. Толщина следа определяется потерями энергии частицы на единице пути, которые зависят от заряда и скорости частицы. Если трек умещается в рабочем объеме детектора, то по длине следа определяют пробег частицы, зависящий от энергии частицы, ее заряда и массы. Среднеквадратичный угол рассеяния зависит от заряда, скорости и импульса частицы. И, наконец, если детектор помещен в магнитное поле, по радиусу кривизны следа определяют отношение импульса к заряду частицы. Богатая информация о свойствах частицы позволяет определить не только характеристики, но и тип зарегистрированной частицы.

Существуют несколько типов следовых детекторов:

Ядерные фотоэмульсии

В фотографической эмульсии заряженные частицы оставляют видимые следы, которые после проявления можно детально изучать. Значительная плотность эмульсии (около 3.8 г/см 3) позволяет остановить в ней частицы довольно высокой энергии. Вследствие малых размеров проявленных зерен фотоматериала (~0.6 мкм) эмульсия позволяет получить отличное угловое и пространственное разрешение.

История использования фотоэмульсий для регистрации ядерных частиц началась с наблюдения Беккерелем в 1896 году почернения фотопластинок в присутствии урановых соединений, приведшего к открытию явления радиоактивности (см. лекцию). Ядерные эмульсии отличаются от обычных большой толщиной чувствительного слоя - до нескольких сотен микрон. Ядерные эмульсии, как и обычные светочувствительные, состоят из желатина и взвешенных частиц кристаллического бромистого серебра (AgBr) размером до 0.3 мкм. Заряженные частицы, проходя через слой эмульсии, ионизуют атомы, лежащие на их пути. В результате происходит разложение бромистого серебра и образование центров скрытого изображения. При последующем проявлении в эмульсии образуются мельчайшие зёрна металлического серебра размером до ~1 мкм, которые наблюдаются под микроскопом в виде точек различной жирности. След частицы имеет вид цепочки таких точек со средним расстоянием между ними, не превышающим 5 мкм. По характеру этого следа (концентрации точек и отклонению от прямолинейности) можно идентифицировать тип частицы.

С 1945 по 1955 методом ядерных фотоэмульсий были сделаны важные открытия: зарегистрированы π -мезоны и последовательности распадов протонов и мюонов, а также обнаружены ядерные взаимодействия антипротонов и К - -мезонов. Методом ядерных фотоэмульсий был исследован состав первичного космического излучения, кроме протонов в нём были обнаружены ядра Не и более тяжёлых элементов, вплоть до Fe .

Сложность использования ядерных фотоэмульсий связана с их сложным составом (неопределенностью ядра-мишени). К настоящему времени ядерные фотоэмульсии вытесняется пузырьковыми и искровыми камерами и электронными трековыми детекторами частиц.

Камера Вильсона

В камере Вильсона след частицы образует цепочка мелких капелек жидкости вдоль траектории её движения. Изобретена в 1912 г. В 1927г. Ч. Вильсону присуждена Нобелевская премия.

Дрейфовая камера.

Это аналог пропорциональной камеры, позволяющий с ещё большей точностью восстановить траекторию частиц.

Искровая, стриммерная, пропорциональная и дрейфовая камеры обладая многими преимуществами пузырьковых камер, позволяют запускать их от интересующего события, используя их на совпадения со сцинтилляционными детекторами.

Дрейфовая камера является координатным детектором. Это проволочный газонаполненный ионизационный детектор (как и пропорциональная камера), в котором координата частицы определяется по времени дрейфа электронов в газе от места ионизации (пролёта частицы) до сигнальных анодных проволочек. Расстояние между проволочками обычно несколько сантиметров. В отличие от пропорциональной камеры в дрейфовой камере создаётся однородное электрическое поле. Оно включается по стартовым сигналам внешних детекторов (чаще всего сцинтилляционных счётчиков), фиксирующих пролёт частицы через камеру. Далее появившиеся в объёме камеры свободные электроны дрейфуют в однородном и постоянном поле к ближайшим проволочкам. Напряжённость поля в дрейфовом промежутке 1 кВ/см. В непосредственной близости от анодных проволочек происходит образование лавин (газовое усиление достигает 10 6) и по времени задержки прихода лавин на анодные проволочки относительно стартового сигнала определяются координаты частицы. Пространственное разрешение дрейфовой камеры порядка 0.1-0.2 мм, временнoе - наносекунды.

Дрейфовые камеры могут быть плоскими, цилиндрическими и сферическими, Плоские дрейфовые камеры больших размеров используются в экспериментах на ускорителях высоких энергий. Так в ЦЕРНе разработана дрейфовая камера размером 2х4х5 м3.

Сцинтилляционный детектор использует свойство некоторых веществ светиться при прохождении заряженной частицы. Кванты света, образующиеся в сцинтилляторе, затем регистрируются с помощью фотоумножителей. Используются как кристаллические сцинтилляторы, например, NaI, BGO, так и пластиковые и жидкие. Кристаллические сцинтилляторы в основном используются для регистрации гамма-квантов и рентгеновского излучения, пластиковые и жидкие - для регистрации нейтронов и временных измерений. Большие объёмы сцинтилляторов позволяют создавать детекторы очень высокой эффективности, для регистрации частиц с малым сечением взаимодействия с веществом.

Первый сцинтилляционный детектор, названный спинтарископом, представлял собой экран, покрытый слоем ZnS. Вспышки, возникавшие при попадании в него заряженных частиц, фиксировались с помощью микроскопа. Именно с таким детектором Гейгер и Марсден в 1909 г. провели опыт по рассеянию альфа-частиц атомами золота, приведший к открытию атомного ядра. Начиная с 1944 г. световые вспышки от сцинтиллятора регистрируют фотоэлектронными умножителями (ФЭУ). Позже для этих целей стали использовать также светодиоды.



Сцинтиллятор может быть органическим (кристаллы, пластики или жидкости) или неорганическим (кристаллы или стекла). Используются также газообразные сцинтилляторы. В качестве органических сцинтилляторов часто используются антрацен (C14H10), стильбен (C14H12), нафталин (C10H8). Жидкие сцинтилляторы обычно известны под фирменными именами (например NE213). Пластиковые и жидкие сцинтилляторы представляют из себя растворы органических флуоресцирующих веществ в прозрачном растворителе. Например, твердый раствор антрацена в полистироле или жидкий раствор р-терфенила в ксилоле. Концентрация флуоресцирующего вещества обычно мала и регистрируемая частица возбуждает в основном молекулы растворителя. В дальнейшем энергия возбуждения передается молекулам флуоресцирующего вещества. В качестве неорганических кристаллических сцинтилляторов используются ZnS, NaI(Tl), CsI, Bi4Ge3O12 (BGO) и др. В качестве газовых и жидких сцинтилляторов используют инертные газы (Xe, Kr, Ar, He) и N.

Рис.1. Сравнение двух сцинтилляторов

Так как в органических сцинтилляторах возбуждаются молекулярные уровни, которые излучают в ультрафиолетовой области для согласования со спектральной чувствительностью регистрирующих свет устройств (ФЭУ и фотодиодов) используются светопреобразователи, которые поглощают ультрафиолетовое излучение и переизлучают видимый свет в области 400 нм.

Световой выход - доля энергии регистрируемой частицы конвертируемая в энергию световой вспышки. Световой выход антрацена ~0.05 или 1 фотон на 50 эВ для частиц высокой энергии. У NaI световой выход ~0.1 или 1 фотона на 25 эВ. Принято световой выход данного сцинтиллятора сравнивать со световым выходом антрацена, который используется как стандарт. Типичные световые выходы пластиковых сцинтилляторов 50-60%.

Интенсивность световой вспышки пропорциональна энергии, потерянной частицей, поэтому сцинтилляционный детектор может использоваться в качестве спектрометра, т. е. прибора, определяющего энергию частицы.

С помощью сцинтилляционных счетчиков можно измерять энергетические спектры электронов и -лучей. Несколько хуже обстоит дело с измерением спектров тяжелых заряженных частиц (-частицы и др.), создающих в сцинтилляторе большую удельную ионизацию. В этих случаях пропорциональность интенсивности вспышки потерянной энергии наблюдается не при всяких энергиях частиц и проявляется только при значениях энергии, больших некоторой величины. Нелинейная связь амплитуд импульсов с энергией частицы различна для различных фосфоров и для различных типов частиц.

Рис. 2. Сцинтиллятор и ФЭУ

Рис. 3. Устройство ФЭУ

Фотоны, возникшие в сцинтилляторе под действием заряженной частицы, по светопроводу достигают ФЭУ и через его стеклянную стенку попадают на фотокатод. ФЭУ представляет собой баллон, внутри которого в вакууме располагается фотокатод и система последовательных динодов, находящихся под положительным увеличивающемся от динода к диноду электрическим потенциалом. В результате фотоэффекта из фотокатода вылетают электроны, которые затем, ускоряясь в электрическом полем, направляются на систему динодов, где за счет вторичной (ударной) электронной эмиссии образуют нарастающую от динода к диноду электронную лавину, поступающую на анод. Обычно коэффициент усиления ФЭУ (число электронов, достигших анода при выбивании из фотокатода одного электрона) составляет 10 5 -10 6 , но может достигать и 10 9 , что позволяет получить на выходе ФЭУ легко регистрируемый электрический импульс. Временнoе разрешение ФЭУ составляет 10 -8 -10 -9 с.

Энергетическое разрешение сцинтилляционных детекторов ΔЕ/Е обычно не лучше нескольких процентов. Временнoе разрешение определяется главным образом длительностью световой вспышки (временем высвечивания люминофора) и меняется в пределах 10 -6 -10 -9 с.

Большие объёмы сцинтилляторов позволяют создавать детекторы очень высокой эффективности, для регистрации частиц с малым сечением взаимодействия с веществом.

Первый сцинтилляционный детектор, названный спинтарископом, представлял собой экран, покрытый слоем ZnS. Вспышки, возникавшие при попадании в него заряженных частиц, фиксировались с помощью микроскопа. Именно с таким детектором Гейгер и Марсден в 1909 г. провели опыт по рассеянию альфа-частиц атомами золота, приведший к открытию атомного ядра. Начиная с 1944 г. световые вспышки от сцинтиллятора регистрируют фотоэлектронными умножителями (ФЭУ). Позже для этих целей стали использовать также фотодиоды.
Сцинтиллятор может быть органическим (кристаллы, пластики или жидкости) или неорганическим (кристаллы или стекла). Используются также газообразные сцинтилляторы. В качестве органических сцинтилляторов часто используются антрацен (C 14 H 10), стильбен (C 14 H 12), нафталин (C 10 H 8). Жидкие сцинтилляторы обычно известны под фирменными именами (например NE213). Пластиковые и жидкие сцинтилляторы представляют из себя растворы органических флуоресцирующих веществ в прозрачном растворителе. Например, твердый раствор антрацена в полистироле или жидкий раствор р-терфенила в ксилоле. Концентрация флуоресцирующего вещества обычно мала и регистрируемая частица возбуждает в основном молекулы растворителя. В дальнейшем энергия возбуждения передается молекулам флуоресцирующего вещества. В качестве неорганических кристаллических сцинтилляторов используются ZnS, NaI(Tl), CsI, Bi 4 Ge 3 O 12 ,
LaBr 3 (Ce), PbWO 4 и др. В качестве газовых и жидких сцинтилляторов используют инертные газы (Xe, Kr, Ar, He) и N.

Так как в органических сцинтилляторах возбуждаются молекулярные уровни, которые излучают в ультрафиолетовой области для согласования со спектральной чувствительностью регистрирующих свет устройств (ФЭУ и фотодиодов) используются светопреобразователи, которые поглощают ультрафиолетовое излучение и переизлучают видимый свет в области 400 нм.
Световой выход - доля энергии регистрируемой частицы конвертируемая в энергию световой вспышки. Световой выход антрацена ~0.05 или 1 фотон на 50 эВ для частиц высокой энергии. У NaI световой выход ~0.1 или 1 фотона на 25 эВ. Принято световой выход данного сцинтиллятора сравнивать со световым выходом антрацена, который используется как стандарт. Типичные световые выходы пластиковых сцинтилляторов 50-60%.
Интенсивность световой вспышки пропорциональна энергии, потерянной частицей, поэтому сцинтилляционный детектор может использоваться в качестве спектрометра, т. е. прибора, определяющего энергию частицы.
С помощью сцинтилляционных счетчиков можно измерять энергетические спектры электронов и γ -лучей. Для измерения спектров тяжелых заряженных частиц (α -частицы и др.) обычно используют CsI. По сравнению с NaI, он существенно менее гигроскопичен и не требует защитного кожуха, в котором заряженные частицы теряют свою энергию. Энергетическое разрешение CsI заметно хуже, чем у полупроводниковых детекторов, кроме того пропорциональность интенсивности вспышки потерянной энергии у сцинтилляторов наблюдается не при всяких энергиях частиц и проявляется только при значениях энергии, больших некоторой величины. Нелинейная связь амплитуд импульсов с энергией частицы различна для различных люминофоров и для различных типов частиц. CsI применяется, когда требуются измерения энергий заряженных частиц довольно больших энергий, а энергетическое разрешение не играет существенной роли.
В физике высокой энергии нашли применение сцинтилляторы из вольфрамата свинца (PbWO 4). Небольшая радиационная длина (0.89 см) и малый мольеровский радиус (2.19 см) – радиус цилиндрав пределах которого поглощается 90% электромагнитного ливня – позволяет сделать детектор с таким сцинтиллятором компактным с хорошим пространственным разрешением. PbWO 4 в частности был использован для сильно секционированного (17920 каналов детектирования) калориметра – фотонного детектора PHOS детекторного комплекса ALICE на Большом адронном коллайдере.


Рис. 3. Устройство ФЭУ

Фотоны, возникшие в сцинтилляторе под действием заряженной частицы, по световоду достигают ФЭУ и через его стеклянную стенку попадают на фотокатод. ФЭУ представляет собой баллон, внутри которого в вакууме располагается фотокатод и система последовательных динодов, находящихся под положительным увеличивающемся от динода к диноду электрическим потенциалом. В результате фотоэффекта из фотокатода вылетают электроны, которые затем, ускоряясь в электрическом полем, направляются на систему динодов, где за счет вторичной (ударной) электронной эмиссии образуют нарастающую от динода к диноду электронную лавину, поступающую на анод. Обычно коэффициент усиления ФЭУ (число электронов, достигших анода при выбивании из фотокатода одного электрона) составляет 10 5 -10 6 , но может достигать и 10 9 , что позволяет получить на выходе ФЭУ легко регистрируемый электрический импульс.
Энергетическое разрешение сцинтилляционных детекторов ΔЕ/Е обычно не лучше нескольких процентов. Временное разрешение зависит от длительности световой вспышки (времени высвечивания люминофора), от длительности фронта световой вспышки, а также от количества фотоэлектронов (от энергии оставленной частицей в сцинтилляторе) и меняется в пределах 10 -6 -10 -11 с.
Большие объёмы сцинтилляторов позволяют создавать детекторы очень высокой эффективности, для регистрации частиц с малым сечением взаимодействия с веществом.